Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase

نویسندگان

  • Félix Machín
  • Jordi Torres-Rosell
  • Adam Jarmuz
  • Luis Aragón
چکیده

Mitotic cell division involves the equal segregation of all chromosomes during anaphase. The presence of ribosomal DNA (rDNA) repeats on the right arm of chromosome XII makes it the longest in the budding yeast genome. Previously, we identified a stage during yeast anaphase when rDNA is stretched across the mother and daughter cells. Here, we show that resolution of sister rDNAs is achieved by unzipping of the locus from its centromere-proximal to centromere-distal regions. We then demonstrate that during this stretched stage sister rDNA arrays are neither compacted nor segregated despite being largely resolved from each other. Surprisingly, we find that rDNA segregation after this period no longer requires spindles but instead involves Cdc14-dependent rDNA axial compaction. These results demonstrate that chromosome resolution is not simply a consequence of compacting chromosome arms and that overall rDNA compaction is necessary to mediate the segregation of the long arm of chromosome XII.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner

Chromosome morphology in Saccharomyces cerevisiae is only visible at the microscopic level in the ribosomal DNA array (rDNA). The rDNA has been thus used as a model to characterize condensation and segregation of sister chromatids in mitosis. It has been established that the metaphase structure ("loop") depends, among others, on the condensin complex; whereas its segregation also depends on tha...

متن کامل

Cdc14 Phosphatase Induces rDNA Condensation and Resolves Cohesin-Independent Cohesion during Budding Yeast Anaphase

At anaphase onset, the protease separase triggers chromosome segregation by cleaving the chromosomal cohesin complex. Here, we show that cohesin destruction in metaphase is sufficient for segregation of much of the budding yeast genome, but not of the long arm of chromosome XII that contains the rDNA repeats. rDNA in metaphase, unlike most other sequences, remains in an undercondensed and topol...

متن کامل

Cdc14 and Condensin Control the Dissolution of Cohesin-Independent Chromosome Linkages at Repeated DNA

Chromosome segregation is triggered by the cleavage of cohesins by separase. Here we show that in budding yeast separation of the ribosomal DNA (rDNA) and telomeres also requires Cdc14, a protein phosphatase known for its role in mitotic exit. Cdc14 shares this role with the FEAR network, which activates Cdc14 during early anaphase, but not the mitotic exit network, which promotes Cdc14 activit...

متن کامل

Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation.

The segregation of eukaryotic chromosomes during mitosis requires their extensive folding into units of manageable size for the mitotic spindle. Here, we report on how phosphorylation at serine 10 of histone H3 (H3 S10) contributes to this process. Using a fluorescence-based assay to study local compaction of the chromatin fiber in living yeast cells, we show that chromosome condensation entail...

متن کامل

Condensin Relocalization from Centromeres to Chromosome Arms Promotes Top2 Recruitment during Anaphase

Condensin is a conserved chromosomal complex necessary to promote mitotic chromosome condensation and sister chromatid resolution during anaphase. Here, we report that yeast condensin binds to replicated centromere regions. We show that centromeric condensin relocalizes to chromosome arms as cells undergo anaphase segregation. We find that condensin relocalization is initiated immediately after...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 168  شماره 

صفحات  -

تاریخ انتشار 2005